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Persistence of point clouds



Persistence of point clouds

Remember the definition of persistence on a point cloud:

- A collection of points that are unorderly distributed in n-dimensional space is a
point cloud



Point cloud

An example of a point cloud is a set of
points uniformly distributed on any
geometric shape, such as the torus:




Simplices

In Topological Data Analysis (TDA), a simplex is a geometric object that generalizes the
notion of a triangle to higher dimensions. A simplex of dimension k is defined as the
convex hull of (k+1) affinely independent points in Euclidean space.
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Simplicial complexes

Intuitively, a simplicial complex is a
collection of simple building blocks
(the simplices) that are glued
together in a way that preserves their
combinatorial structure.




Persistence of point clouds

Remember the definition of persistence on a point cloud:

- A collection of points that are unorderly distributed in n-dimensional space is a
point cloud

- A filtration is a sequence of simplicial complexes that is used to track the
evolution of the topological features of a data set.



Filtration of circles with increasing radii

For a collection of points (in 2D), we add balls around each point of radius &, for

increasing values of e.




Cech complexes

In Cech complex, two points are connected if their pairwise distance is less than
epsilon. Similarly, for three points to be connected and form a triangle, all epsilon
circles should intersect.




Vietoris - Rips complexes

In Vietoris-Rips complex, two points are connected if their pairwise distance is less
than epsilon. Each higher dimensional simplex is added to the simplicial complex, as
long as all the points are already connected by lines.
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Persistence of point clouds

Remember the definition of persistence on a point cloud:

A collection of points that are unorderly distributed in n-dimensional space is a
point cloud

A filtration is a sequence of simplicial complexes that is used to track the
evolution of the topological features of a data set.

A way to keep track of the evolution of topological features is the persistence
barcode. The persistence barcode keeps track of the first time (birth time) a
simplex is observed in a simplicial complex, and the time (death time) it merges
with a larger component, according to a reference filtration parameter
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Tree filtrations
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Tree filtrations

There is a variety of filtration functions that can
be performed on a tree structure
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Tree filtrations
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Tree filtrations
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Tree filtrations
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Topological Morphology Descriptor
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Topological Morphology Descriptor

The persistence barcode (B) of a tree (A)
represents each component as a horizontal
line whose endpoints mark its birth and
death depending on the choice of the
function f used for the ordering of the nodes
of the tree. For example, f is the radial
distance of the nodes from the root (R). The
largest component is shown in red together
with its birth (I) and death (II). The
persistence barcode can be equivalently
represented as points in a persistence
diagram (C) where the birth (I) and death
(II) of a component are the X and Y
coordinates of a point respectively (in red).
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Topological Morphology Descriptor

Tree structure Persistence barcode

100 200 300 400
Lifetime: radial distance from soma

Tree decomposition into a barcode from longer (red) to shorter (blue) components




Topological Morphology Descriptor

Definitions

Given a tree T with vertices [IKRHUNY] with leaves UINES 0, L]
And a function f applied on the vertices:

The TMD persistence of a tree is a collection of intervals that represent the topological
components of the tree
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Topological Morphology Descriptor

Algorithm

Given a tree T with vertices v, and leaves l and a function f applied in all vertices
f(v.) the TDM of the tree is given by the followmg algorithm:

Collect all leaves

Find all parents of leaves (parent is a vertex one step towards the root)
Find all siblings (vertices that share the same parent)

Compare their values f, the larger value persists according to Elder rule

Vi W N

Repeat the process until the root is reached
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Topological Morphology Descriptor (intuition)
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Topological Morphology Descriptor - Number of branches

Persistence diagram
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Topological Morphology Descriptor - Number of branches

Persistence diagram
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Topological Morphology Descriptor - Branch length

Persistence diagram
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Topological Morphology Descriptor - Branch length

Persistence diagram
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Topological Morphology Descriptor - obliques from tuft

Persistence diagram
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Topological Morphology Descriptor - obliques from tuft

Persistence diagram

Far from the soma:
apical tufts

Close to the soma:
obliques
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How can we compute the total length?
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Representations of persistence
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Topological summaries

Many data sets can be viewed as a noisy sampling of an underlying space, and tools
from topological data analysis can characterize this structure for the purpose of
knowledge discovery. One such tool is persistent homology, which provides a
multiscale description of the homological features within a data set. The topology of
an object can be summarized in the information encoded in the barcode.

However this information can be rearranged and presented in a variety of methods.
The use of TDA has been limited by the difficulty of combining the main tools,
such as the barcode or persistence diagram with statistics and machine learning.
There are many summaries that allow the combination of TDA with machine
learning and statistics.
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Persistence harcodes

The two standard topological summaries of data are the barcode and the
persistence diagram. They represent almost the same dataset (orientation of the
lifetime is lost in the barcode). A barcode illustrates the lifetime of each component

in the underlying topological structure.
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Persistence diagrams

The persistence diagram encodes the start and end time of each component in the

2D plane
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Persistence diagrams / barcodes

Both of these representations are powerful visual tools to investigate the underlying

topological properties:

-  How many components are present at each stage
- How many higher structures (holes) are observed
- If there are infinite persistent features

However...
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Persistence diagrams / barcodes

The problem with this representations is:

- They cannot be used as input to machine learning as they are not vectorized
- They cannot be used directly to compute averages for a group of objects
- It is not straightforward to define a distance between them

That’s why different vectorization techniques have been proposed.
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Betti curves

The Betti curve is a function mapping a persistence diagram to an integer-valued
curve, i.e. each Betti curve is a function B: R — N.

It sums the number of bars at each parameter level. This representation is:
* Easy to calculate

* Simple representation, ‘living’ in the space of piecewise linear functions
* Vector space operations are possible (addition, scalar multiplication)

» Distances and kernels can be defined
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Betti curves

A persistence diagram (a), its persistence barcode (b), and its corresponding
persistence indicator function (c)

Persistence diagram Persistence barcode

Rieck et al. 2019

37



Persistence landscapes (Bubenik 2016)

A topological summary for data introduced in 2016 by Bubenik is the persistence
landscape. Since this summary lies in a vector space, it is easy to combine with
tools from statistics and machine learning, in contrast to the standard topological
summaries. Viewed as a random variable with values in a Banach space, this

summary obeys a strong law of large numbers and a central limit theorem.
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Persistence landscapes

Statistical Topological
Data Analysis using
Persistence
Landscapes

Peter Bubenik 2016
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Persistence silhouette (Chazal et al. 2014)

Persistent homology is a widely used tool in Topological Data Analysis that encodes
multiscale topological information as a multiset of points in the plane called a
persistence diagram. It is difficult to apply statistical theory directly to a random
sample of diagrams. Instead, we need to summarize persistent homology with a
vectorized version, which converts a diagram into a well-behaved real-valued
function. In 2014, Chazal et al. introduced an alternate functional summary of
persistent homology, the persistent silhouette.
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Persistence silhouette

The persistence silhouette, similar to the landscape transforms the diagram to a
vectorized version that can be used as input for statistics and machine learning
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Persistence images (Adams et al. 2017)

Another useful representation of homological information is a persistence diagram
(PD). Efforts have been made to map PDs into spaces with additional structure
valuable to machine learning tasks. Adams et al. (2017) convert a PD to a finite-
dimensional vector representation, the persistence image (PI). The discriminatory
power of PIs is compared against existing methods, showing significant

performance gains.
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Persistence images

Algorithm pipeline to transform data into a persistence image. From the data, to the
diagram, to surfaces that can be encoded into vector images.
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Projects
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Projects

General idea, participants, title
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Methods

Datasets
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