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Persistence of point clouds 
Remember the definition of persistence on a point cloud:

- A collection of points that are unorderly distributed in n-dimensional space is a 
point cloud
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Point cloud
An example of a point cloud is a set of 
points uniformly distributed on any 
geometric shape, such as the torus:
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Simplices
In Topological Data Analysis (TDA), a simplex is a geometric object that generalizes the 
notion of a triangle to higher dimensions. A simplex of dimension k is defined as the 
convex hull of (k+1) affinely independent points in Euclidean space.
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Simplicial complexes

Intuitively, a simplicial complex is a 
collection of simple building blocks 
(the simplices) that are glued 
together in a way that preserves their 
combinatorial structure.
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Persistence of point clouds 
Remember the definition of persistence on a point cloud:

- A collection of points that are unorderly distributed in n-dimensional space is a 
point cloud

- A filtration is a sequence of simplicial complexes that is used to track the 
evolution of the topological features of a data set. 
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Filtration of circles with increasing radii
For a collection of points (in 2D), we add balls around each point of radius ε, for 
increasing values of ε. 
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Čech complexes 
In Čech complex, two points are connected if their pairwise distance is less than 
epsilon. Similarly, for three points to be connected and form a triangle, all epsilon 
circles should intersect. 
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Vietoris - Rips complexes 
In Vietoris-Rips complex, two points are connected if their pairwise distance is less 
than epsilon. Each higher dimensional simplex is added to the simplicial complex, as 
long as all the points are already connected by lines. 
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Persistence of point clouds 
Remember the definition of persistence on a point cloud:

- A collection of points that are unorderly distributed in n-dimensional space is a 
point cloud

- A filtration is a sequence of simplicial complexes that is used to track the 
evolution of the topological features of a data set. 

- A way to keep track of the evolution of topological features is the persistence 
barcode. The persistence barcode keeps track of the first time (birth time) a 
simplex is observed in a simplicial complex, and the time (death time) it merges 
with a larger component, according to a reference filtration parameter
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Tree filtrations
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Tree filtrations
There is a variety of filtration functions that can 
be performed on a tree structure
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Tree filtrations

14



Tree filtrations
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Tree filtrations
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Topological Morphology Descriptor
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Topological Morphology Descriptor
The persistence barcode (B) of a tree (A) 
represents each component as a horizontal 
line whose endpoints mark its birth and 
death depending on the choice of the 
function f used for the ordering of the nodes 
of the tree. For example, f is the radial 
distance of the nodes from the root (R). The 
largest component is shown in red together 
with its birth (I) and death (II). The 
persistence barcode can be equivalently 
represented as points in a persistence 
diagram (C) where the birth (I) and death 
(II) of a component are the X and Y 
coordinates of a point respectively (in red). 
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Topological Morphology Descriptor
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Tree decomposition into a barcode from longer (red) to shorter (blue) components



Definitions

Given a tree T with vertices                           with leaves                  

And a function f applied on the vertices: 

The TMD persistence of a tree is a collection of intervals that represent the topological 
components of the tree 

Topological Morphology Descriptor
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Algorithm

Given a tree T with vertices vi and leaves lj, and a function f applied in all vertices 
f(vi) the TDM of the tree is given by the following algorithm:

1. Collect all leaves 
2. Find all parents of leaves (parent is a vertex one step towards the root)
3. Find all siblings (vertices that share the same parent)
4. Compare their values f, the larger value persists according to Elder rule
5. Repeat the process until the root is reached

Topological Morphology Descriptor
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Topological Morphology Descriptor (intuition)
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Topological Morphology Descriptor - Number of branches
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Topological Morphology Descriptor - Number of branches
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Number of points -> 
number of branches 
in the tree 



Topological Morphology Descriptor - Branch length 
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Topological Morphology Descriptor - Branch length 
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Far from diagonal: 
largest branch, 
corresponds to apical 
main trunk

Distance from 
diagonal: branch 
size



Topological Morphology Descriptor - obliques from tuft
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Topological Morphology Descriptor - obliques from tuft
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Far from the soma: 
apical tufts

Close to the soma: 
obliques



How can we compute the total length?
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Representations of persistence
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Topological summaries 
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Many data sets can be viewed as a noisy sampling of an underlying space, and tools 
from topological data analysis can characterize this structure for the purpose of 
knowledge discovery. One such tool is persistent homology, which provides a 
multiscale description of the homological features within a data set. The topology of 
an object can be summarized in the information encoded in the barcode. 

However this information can be rearranged and presented in a variety of methods. 
The use of TDA has been limited by the difficulty of combining the main tools, 
such as the barcode or persistence diagram with statistics and machine learning. 
There are many summaries that allow the combination of TDA with machine 
learning and statistics. 



Persistence barcodes
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The two standard topological summaries of data are the barcode and the 
persistence diagram. They represent almost the same dataset (orientation of the 
lifetime is lost in the barcode). A barcode illustrates the lifetime of each component 
in the underlying topological structure.



Persistence diagrams
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The persistence diagram encodes the start and end time of each component in the 
2D plane 



Persistence diagrams / barcodes
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Both of these representations are powerful visual tools to investigate the underlying 
topological properties:

- How many components are present at each stage
- How many higher structures (holes) are observed
- If there are infinite persistent features 

However… 



Persistence diagrams / barcodes
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The problem with this representations is:

- They cannot be used as input to machine learning as they are not vectorized
- They cannot be used directly to compute averages for a group of objects 
- It is not straightforward to define a distance between them

That’s why different vectorization techniques have been proposed. 



Betti curves
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The Betti curve is a function mapping a persistence diagram to an integer-valued 
curve, i.e. each Betti curve is a function B : R → N.

It sums the number of bars at each parameter level. This representation is:

• Easy to calculate

• Simple representation, ‘living’ in the space of piecewise linear functions

• Vector space operations are possible (addition, scalar multiplication)

• Distances and kernels can be defined



Betti curves
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A persistence diagram (a), its persistence barcode (b), and its corresponding 
persistence indicator function (c) 

Rieck et al. 2019



Persistence landscapes (Bubenik 2016)
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A topological summary for data introduced in 2016 by Bubenik is the persistence 
landscape. Since this summary lies in a vector space, it is easy to combine with 
tools from statistics and machine learning, in contrast to the standard topological 
summaries. Viewed as a random variable with values in a Banach space, this 
summary obeys a strong law of large numbers and a central limit theorem. 



Persistence landscapes
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Statistical Topological 
Data Analysis using 
Persistence 
Landscapes

Peter Bubenik 2016



Persistence silhouette (Chazal et al. 2014)
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Persistent homology is a widely used tool in Topological Data Analysis that encodes 
multiscale topological information as a multiset of points in the plane called a 
persistence diagram. It is difficult to apply statistical theory directly to a random 
sample of diagrams. Instead, we need to summarize persistent homology with a 
vectorized version, which converts a diagram into a well-behaved real-valued 
function. In 2014, Chazal et al. introduced an alternate functional summary of 
persistent homology, the persistent silhouette. 



Persistence silhouette
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The persistence silhouette, similar to the landscape transforms the diagram to a 
vectorized version that can be used as input for statistics and machine learning



Persistence images (Adams et al. 2017)
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Another useful representation of homological information is a persistence diagram 
(PD). Efforts have been made to map PDs into spaces with additional structure 
valuable to machine learning tasks. Adams et al. (2017) convert a PD to a finite- 
dimensional vector representation, the persistence image (PI). The discriminatory 
power of PIs is compared against existing methods, showing significant 
performance gains. 



Persistence images
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Algorithm pipeline to transform data into a persistence image. From the data, to the 
diagram, to surfaces that can be encoded into vector images. 



Projects
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Projects
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1. General idea, participants, title
2. Objectives
3. Methods
4. Datasets


